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Abstract. The gauge group of the bundle of linear frames is used to classify the set ofSVuCNleS 
of a given G-shucture P -+ M ,  and to parametrize fhe canonical forms on such a bundle. 
Lagrangian densities on J'(P). which are either Gau P-invariant or Dflp  M-invariant when P 
iS transitive of finire type. an determined. The Gau P and Dif& M invariance is reduced to 
scalar Lagrangians. 

1. Introduction 

This work is divided into two parts. In sections 2 and 3 we analyse the role that the gauge 
group of the bundle of linear frames L ( M )  plays in studying the set of structures of a 
G-structure P over M .  In sections 4 and 5 we determine the Lagrangians on J ' ( P )  which 
are either Gau P-invariant or invariant under the group of automorphisms of a transitive 
G-structure P with a finite Lie algebra. 

There are two groups of transformations naturally associated with a given G-structure 
n : P -+ M. In the first place, the group of automorphisms of P ,  Aut P, formed by all 
equivariant diffeomorphisms rp : P + P and, secondly, the gauge group Gau P: this is 
the subgroup of n-vertical automorphisms of Aut P, i.e. Gau P = {rp E Aut P; n o(p = x } .  
Moreover, a diffeomorphism 01 : M + M is said to be an automorphism of P if the 
natural lifting h : L ( M )  + L ( M )  of a: to the bundle of linear frames leaves P invariant. 
The set of diffeomorphisms enjoying that property is a subgroup Diffp M of the group of 
all diffeomorphisms of M .  We have included Gau P c Aut P, and DiEp M + Aut P, 
01 H i? = G I P .  Roughly speaking, Gaup  and Diffp M are the vertical and horizontal 
subgroups of Aut P, respectively. 

Gauge theory and Yang-Mills fields initiated the interest in the gauge group of a principal 
bundle in field theory [ 1-41, Moreover, Higgs fields and spontaneous symmetry breaking 
have increased the interest in considering reductions of a principal bundle to extend the 
gauge invariance of Lagrangians which depend on connections [1,5,6]. In the case of a 
reduction of the bundle of linear frames, the gauge group also holds an important place in 
the study of the geometry of the reduction. In fact, we prove that Gau L ( M )  parametrizes 
the set of G-structures on P, i.e. the number of ways in which P can be equivariantly 
immersed into L ( M )  by means of a map preserving the fibre structure of P over M. 
Similarly, Gau P also parametrizes the set of canonical forms on P ,  in a sense clarified 
later. Furthermore, the structure form Op, naturally attached to P, characterizes G-structure 
morphisms; in other words, an equivariant map (0 : P -+ P' satisfies (p*6p, = B p  if, and 
only if, a local diffeomorphism exists f : M + M' such that (p = &. Accordingly, a 
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gauge transformation (0 leaves Bp fixed if, and only if, (o is the identity. In fact, we have 
a natural isomorphism between Diffp M and AutOp = [ q  E Aut P: p*Op = Op). We also 
introduce the comesponding Lie algebras Tp(M) of Diffp M and gau P of Gau P, and we 
prove similar infinitesimal versions of the above results. 

Every 9 E Aut P can naturally be lifted to an automorphism (d') of the 1-jet bundle, 
J'(P). Consequently, it is natural to require that Lagrangians L : J ' ( P )  + R are invariant 
under this representation. More precisely, a Lagrangian is said to be invariant under a 
subgroup r c Aut P if, and only if, for every rp E r, we have L o p ( ' )  = L. In this 
way, it is natural to look for the Lagrangians which are invariant under the aforementioned 
goups naturally attached to a G-structure: Gau P and Diffp M. The investigation of 
Gau P-invariant Lagrangians was initially motivated by the so-called geometric formulation 
of Utiyama's theorem [1,2,7,8], according to which a Lagrangian L defined on the 
bundle of connections of a principal G-bundle P is gauge invariant if, and only if, L 
factors through the curvature mapping by means of a function defined on the curvature 
bundle A* T * ( M )  Q ad P, which must also be invariant under the natural gauge algebra 
representation of that bundle. There is a strong relationship between the bundle of 
connections IC of P and the I-jet bundle of P itself: K can be identified with the quotient 
J ' ( P ) / G ,  the group G acting in a natural way on J'(P) [1,6,8,9], Consequently, the 
existence of invariant Lagrangians on J ' ( P )  arises naturally. For Gau P, we obtain a 
negative general result: there are no Gau P-invariant Lagrangians except for the functions 
on M. On the other hand, assuming that P is transitive and the Lie algebra of G is of finite 
type, we obtain the number of functionally independent Diffp M-invariant Lagrangians. In 
practice this result allows us to determine explicitly a basis LI, . . . , LN of Diffp M-invariant 
Lagrangians in the sense that any other Diffp M-invariant Lagrangian can be locally written 
as a differentiable function of L1, . . . , LN. We include some examples in order to illustrate 
the procedure. 

The group of diffeomorphisms of spacetime can be considered as the gauge group of 
general relativity [10-12]. In fact, our study of Diffp M-invariant Lagrangians has been 
motivated by the different attempts to understand general relativity as a gauge theory, 
particularly from Kibble's idea of treating the problem of determining Diff M-invariant 
Lagrangians on the bundle of memcs on spacetime as DiffM-invariant Lagrangians on the 
bundle of linear frames which, in turn, are invariant under the representation of the gauge 
group obtained by gauging the Poincar.5 group. This allows us to consider Lagrangians 
not defined on the whole bundle L ( M ) ,  but only on a reduction P, and to introduce, in 
addition, the condition of transitivity for the G-structure P as a reasonable hypothesis to 
obtain models that are as simple as possible. For example, in the metric case, transitive 
G-structures lead one to pseudo-Riemannian manifolds of constant curvature. 

F Etayo Gordejuela and J Murioz MasquC 

2. Parametrizing G-structure immersions 

Let p : L(M) -+ M be the bundle of linear frames of an n-dimensional manifold M .  Let 
G be a Lie subgroup of Gl(m, a). A G-structure on M is a principal G-bundle x : P + M 
together with a reduction f : P + L ( M ) ;  which means: 

(i) f is an equivariant map, i.e. f ( u  . A) = f ( u ) .  A, for every U E P, A E G; and 
(ii) i~ = p o f. 

From (i) and (ii) it follows that f is an injective immersion. In fact, as G acts freely on 
L ( M )  and f is equivariant, f is also injective. Moreover, f is of constant rank since it is 
equivariant; hence the fibres of f are submanifolds of dimension dim P - rk f. As f is 
injective, this yields rk f = dim P. 
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Observe that a principal G-bundle x : P + M can define different G-structures on M 
by considering different maps P + L ( M )  verifying (i) and (ii) above. When we want to 
emphasize the principal G-bundle i? : P + L ( M )  of a given G-structure on M, we shall 
denote it as a GP-structure on M, 

A local diffeomorphism 01 : M -+ M' is said to be a morphism of the G-structure 
z : P -+ M into the G-structure x' : P' --f M' if for every U E P, G ( ( f ( u ) )  E f ' (P ' ) ,  
where t5 : L ( M )  --t L(M' )  is the isomorphism of principal bundles induced from 01, i.e. 
G ( X 1 , .  .., X,) = (01*(Xl), , . . , c r . ( X , ) )  (cf [13], ch VI section 1). 

L e m m  1. If 01 : M --t M' is a morphism of the G-structure x : P + M into the G- 
structure x' : P' -+ M', then there exists a unique differentiable mapping iF : P + P' such 
that f ' o E = G o  f .  

Proof: As f and f' are injective, the existence and uniqueness of a mapping making 
f' o E = G o f is clear. In order to prove that Z is Cm we only need to prove that f' is an 
integral manifold of an involutive distribution on L(M')  (e.g. see [14] 1.26); that is, we are 

0 

Subkmma. Every G-structure f : P + L ( M )  is an integral manifold of an involutive 
distribution on L ( M ) .  

Proofofthe sublemma. We define a distribution 'D on L ( M )  as follows. Given a point 
z E L ( M ) ,  let U E P be a point such that P ( K )  = x(z ) .  Then, there exists a unique matrix 
A E Gl(m,R) such that z = f ( u ) .  A. We set 'D, = (R&f*TU(P) .  The definition makes 
sense because it does not depend on the point U chosen. In fact, if U E P is another point such 
that p ( u )  = x(z) ,  then there exists B E G such that U = U .  B ,  so that z = f ( u ) .  BA,  and 
hence ( R E A ) ~ * T " ( P )  = ( R A ) . ( R E ) * ~ * T ~ P )  = (RA)J . (RE) .TLP)  = ( R A ) J . Z ( P ) ,  
since f and RE commute and (RE) .  transforms T,(P) onto TU.a(P) .  

From the very definitions, it follows that f : P -+ L ( M )  is an integral submanifold of 
the distribution 'D. Moreover, 'D is involutive if, and only if,' through each point of L(M) 
there passes an integral manifold of 'D (e.g. see [15] 4.44) and it is easily checked that 

0 

led to prove the following sublemma. 

g : P -+ L ( M ) ,  g = R A  of, is an integral manifold of 'D through z = g(u). 

Notation. 
(i) We denote by Diffp(M) the group of automorphisms of the G-structure P ;  i.e. 

Diffp(M) = (CY E Diff(M); G(f(P)) = f(P)), and for every 01 E Diffp(M), Z stands for 
the map defined in the above lemma. 

(ii) Given a principal bundle K : P + M with group G and a left action of G on a 
manifold F ,  we denote by x~ : P xG F --t M the corresponding associated bundle. 

It is not difficult to see (e.g. see [l] ch 3) that the sections of RF can be identified with 
the equivariant maps from P into F ;  i.e. r(a,) = {fi  : P -+ F ;  @(U . U) = U-' . f i (u ) ,  
for all U E P, U E GI. In fact, we can associate with each equivariant map f i  : P + F a 
section sp by setting sp(x)  = [U. f i(u)J,  where U is any point in the fibre x - ' ( x )  and [U, y] 
stands for the orbit of (U, y )  in P x G  F = (P x F) /G.  Conversely, given a section s of 
RF we can define an equivariant map by imposing that [U, f i (u) ]  = s(x) .  

We also recall [5 ]  that the gauge group Gau P of a principal G-bundle i? : P --f M is 
the group of equivariant diffeomorphisms (0 : P 3 P making x = x o 'p. 



500 

Theorem 1. Let II : P + M ,  f : P --t L ( M )  be a G-structure. The map 9 H 90 f ,  
establishes a bijection between the gauge group GauL(M) of the bundle of linear frames 
and the set of GP-structures on M .  

Proof. Let g : P -+ L ( M )  be a map defining another GP-structure on M (i.e. g satisfies 
properties (i) and (ii) above). Then, there exists a unique mapping ,9 : P --t Gl(m. W) such 
that for every U E P, g(u) = f ( u )  &). Moreover, i3 is equivariant with respect to the 
action of G on Gl(m,R) by conjugation; i.e. B A = B A B - I ,  E E G, A E Gl(m,R). 
Hence, p defines a section of the associated bundle Y W ( ( ~ , R )  : P xG Gl(m,R) + M .  
Conversely, any section $ of Z C I ( ~ . R )  determines a G-structure h : P -+ L ( M )  by simply 
setting h(u) = f(u) . $(U). Furthermore, g = h implies ,9 = e. Accordingly, the set 
of GP-structures on M corresponds bijectively with the sections of IIG!(~,B). Next, we 
shall prove that P x G  Gl(m, R) -+ M is isomorphic, as a bundle of Lie groups on M ,  
to the bundle associated with L ( M )  by the representation of Gl(m, R) onto itself acting 
by conjugation; i.e. P xc Gl(m,  R) = L ( M )  x ~ ~ ~ ~ , ~ )  Gl(m, R). Let us denote by [U, A] 
(resp. by [U, A } )  the orbit of the couple (U. A ) ,  U E P (resp. U E L ( M ) ) ,  A E Gl(m, R), 
in ( P  x Gl(m,!R))/G (resp. in ( L ( M )  x Gl(m,R))/Gl(m,R)). As G c Gl(m,R), the 
mapping F : P x Gl(m, R) -+ L ( M )  x Gl(m. R), F(u ,  A) = ( f ( u ) ,  A), gives rise to a 
map : ( P  x Gl(m,R)) /G + ( L ( M )  x Gl(m,R)) /Gl(m,R) ,  which will be seen to be 
an isomorphism. 

F Etayo Gordejuela and J Murioz Masquk 

, . . . , . . . . , 
(ii) 7 is surjective. Given ( z ,  A}, let U E P be such that p ( z )  = a@). Then, there 

- exists B E Gl(m, R) such that z = f ( u )  B ,  and we have (z, A)  = (re), BAB- ' )  = 
F([u .  BAE-'I ) .  

(iii) F is injective. In fact, ( f ( u ) ,  A )  = ( f ( v ) ,  B )  implies f ( v )  = f ( u )  . C, 
B = C-'AC. The first equation forces C to be in G, hence U = U .  C and, consequently, 
Iu, AI =[U. BI. 

In order to finish the proof we need only remark that Gau L ( M )  can be identified with 
the sections of L ( M )  x"(~.') Gl(m, R) -+ M. In fact, the sections of the above bundle 
are identified with the equivariant maps ,9 : L(M) -+ Gl(m,R), and we can define an 
automorphism Q : L ( M )  +. L ( M ) ,  by setting, for every z E L ( M ) ,  Q(z) = z I p(z).  For 

Remarks. 

only on M .  

mapping 

the details, see [I61 section 35 and [17]. a 

(i) Note that the set of possible GP-structures on M does not depend on P itself, but 

(ii) If we substitute another immersion g = e of, 9 E GauL(M) for f, then the 
H p o  f is changed by a right translation of Gau L ( M ) ;  i.e. 01 w (pog = 

(90 $) 0 f. 
Corollary. If M is parallelizable, the set of homotopy classes of GP-structures on M can 
be identified with the set of homotopy classes of maps from M into O(m). 

Proof. Two GP-structures g, h : P -+ L ( M )  are said to be homotopic if there exists a 
family of GP-structures FI : P +. L ( M ) ,  t E [0, 11, such that: (i) F : [O. 11 x P + L ( M ) ,  
F( t .  U) = F,(u), is a continuous mapping: and (ii) Fa = g, F, = h.  It is not difficult to see 
that the G-structures g. h are homotopic if, and only if, the corresponding automorphisms 
p, 9 are homotopic in the space of sections of L ( M )  x ~ ~ ( ~ . ~ )  GI@, a) -+ M. If M is 
parallelizable, this bundle is trivial and its sections are the maps from M into Gl(m. R). As 

0 Gl(m, R) and O(m)  are homotopically equivalent, the proof is complete. 
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Examples. 
(i) Let M be a connected 3-manifold such that H ' ( M ;  &) = 0. Then, given a principal 

G-bundle n : P -+ M, the GP-structures on M are classified by (?cl] x H3(M; Z). In 
fact, by virtue of the hypothesis, M is orientable and, consequently, M is parallelizable 
[18]. We can thus apply the above corollary. Let us denote by [ X ,  Y ]  the set of homotopy 
classes of maps from X into Y .  We state that the GP-structures on M are classified by 
[M, O(3)J = (&I}  x [M, S 0 ( 3 ) ] .  Moreover, we have a 2-sheet covering S3 --t SO(3), and 
from our hypothesis we conclude that every map from M to SO(3) can be lifted to S3. The 
result thus follows by simply applying Hopf s classification theorem. 

(ii) The 7-sphere provides another interesting example. Since S7 is paralleliable, the 
homotopy classes of GP-structures on M are [S7, 0(7 ) ]  = [&I}  x q(SO(7)) = (*I) x Z. 

3. Canonocal form on G-structures 

Let 6' be the canonical form on L ( M ) .  If a linear frame z at a point x E M is understood 
to be a linear isomorphism z : Wm + T ( M ) ,  then for every Y E T,(L(M)) we have: 
O(Y)  = z - ' (p ,Y) .  Accordingly, b' is a Wm-valued one-form on L(M) .  If ( U ;  xl,. . . , xm) 
is an open coordinate domain in M and we define the induced coordinate system (xh. z;), 
h ,  i, j = 1,. , . , m, on p - ' ( U ) ,  by setting z = ( ( a / a x ~ ) , ,  . . . , (a/ax,),). (z:), x = p(z), 
for every z E p-'(U), then the local expression for the canonical form is 8' = cy=, tj dd, 
where b' = ( @ I ,  . . . ,e") and ($) stands for the inverse matrix of (2:). 

The canonical form of a G-structure n : P + M ,  f : P -+ L ( M )  is defined by 
eP = f ' b ' .  Hence, OP is a Rm-valued form on P. 

Proposition 1. The canonical form b'p of a G-structure satisfies the following propehes: 
(1) A tangent vector Y E T,(P) is %-vertical if, and only if, b'p(Y) = 0. 
( 2 )  For every A E G, R;b'p = A-' o B p .  
(3) For every A E g, L p b ' p  = -AoBp ,  where A" E X ( P )  stands for the fundamental 

(4) For every A E g, iA. dB = - A o b ' p .  

Each of these properties is a simple consequence of the corresponding property of b' on 

vector field associated with A and g is the Lie algebra of G. 

L ( M ) ,  and thus the proof is omitted. 

Proposition 2. 
be a principal G-bundle. 

satisfying properties (1) and (2) above. 

Let G be a Lie subgroup of Gl(m, m = dim M, and let n : P -+ M 

(i) n : P --t M is a G-structure if, and only if, P admits a Wm-valued I-form w 

(ii) In that case, there is a unique G-structure f : P -+ L ( M )  such that w = pb'. 
(iii) There is a bijection between canonical forms on P and elements of Gau P. 
(iv) A gauge transformation v, E Gau P leaves b'p invariant if, and only if, v, is the 

identity. 

Proof: For the sake of 
completeness however, we sketch an updated proof of these facts. First we prove the 
uniqueness of f in (ii). From (1) we deduce that w : T,(P) -+ Rm is surjective. 
Hence, for every 5 E W m  there exists X E T,(P) such that w ( X )  = and, in that case, 
e = w ( X )  = b'(f.X) = f(u)-'(p,f,X) = f(u)-'(n*X); i.e. f ( u ) Q )  = n r X .  Again, by 
using (1) we conclude that we can define f by the previous formula and (2) then shows 

The first two parts of the statement are contained in [19]. 
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that f (U . A)(A-' 0)) = f (U)(() or, equivalently, that f is equivariant. Part (iii) follows 
directly from theorem 1. Moreover, assume p'9p = 9 p ;  i.e. (f o rp)*9 = f ' 9 .  By virtue of 
the uniqueness of the G-structure in (ii), we obtain f o 'p = f ,  and since f is injective the 

U 

Theorem 2. Let M ,  M' be two manifolds of the same dimension: dimM = dim M' = m. 
(i) Let Q, : L(M) + L(M') be an equivariant map. There exists a local diffeomorphism 

01 : M + M' such that 9 = 2 if, and only if, 0%" = 9. In that case, 01 is the map induced 
by Q, on the base manifolds. 

(ii) Let i~ : P i M ,  R' : P' -+ M' be two G-smctures. An equivariant map 
(o : P + P' is a morphism of G-structures if, and only if, p V P j  = eP. 

Proof. 
(i) If o( : M -+ M' is a local diffeomorphism, for every X E Tu(P),  we 

have (2*9 ' ) (X)  = &(u)-'@:(iY.X)) = G(u)- ' (%p*X) =-I u ( p , X )  = B(X). 
Conversely, assume 0'9' = 8 and let a be the mapping induced by 0 on the 
base manifolds. First, we prove that a is a local diffeomorphism. We have 
8' = O*9" = c&(f;i o@)d(x"oa) = c& t , ! ,dxj.  Hence, d ( d h o a )  = 
CTj=l(zf o Q,)(rji o Q,)d(x'J 001) = Cyj,,(zf o Q,)$ dxJ. We set 2 = ( z j ) ~ ~ ~ , j ~ . ,  

are invertibte matrices, a is an isomorphism. Next, we prove that 0 is also a local 
diffeomorphism. Let us fix a point U E L(M, x = p(u) .  and set U' = @(U), x' = ( ~ ( x ) .  As 
the kernel of p* : T U U M )  -+ T,(M) is the tangent space to the fibre p - ' ( x )  = u.Gf(m, R), 
we have a commutative diagram with exact rows: 

F Etayo Gordejuela and J Mu~ioz Mmqu.6 

above equation implies 'p = id. 

Z' = (~:)i<i,j<~. Thus, d(x"0O1) = ~ ; I = l ( ( Z ' ~ O ) ' Z ) $ d d .  AS Z ' o O  and Z, both 

0 --+ T,(u.Gl(m,R)) -+ T,L(M) 4 T,M + 0 IQ,: IQ,* 1. 
0 --+ T,r(u"Gl(m,R)) --+ T,*L(M') --+ T,,M' i 0 

where 0; is nothing but the restriction of 0, to the fibre. Since a* is an isomorphism, 
in order to prove that 0* is an isomorphism it will be sufficient to prove that 0; is an 
isomorphism. Let p : Gl(m, R) + U Gl(n ,  R) (resp. @' : Gf(m, R) -+ U'. Gl(m, R)) be 
the mapping p ( A )  = u.A (resp. p ' (A)  = u'.A). Then we have 0'0fi = p' and, since p and 
p' are diffeomorphisms, the result follows. Let U be an open neighbourhood of x such that 
a : U -+ U' is a diffeomorphism and Q, : p- ' (V)  -P p'-'(U') is also a diffeomorphism. 
we set @ : L(U) + L(U), @ = @-' 02. Then, @ is a gauge transformation leaving 0 
invariant; i.e. * "e  = 8. From proposition 2(iv) we conclude that @ is the identity, thus 
finishing the proof of the first part of the statement 0 

(ii) We can extend p, : P -+ P' to an equivariant map 0 : L(M)  -+ L(M' )  in such a 
way that @of = f ' o rp .  In fact, given a frame U E L(M),  let us take U E P such that 
n(u)  = ~ ( I J ) .  Then, there exists A E Gl(m. R) such that U = f ( u )  . A,  and we define 
@(U) = f'('p(u)). A.  The definition makes sense because if we take another point U .  B, B E 
G, then U = f ( u . B ) . B - ' A ;  hence f'(&-B))-B-'A = f '@(u)) .BB-'A = f'(rp(u)).A. 
Consequently, we only need to prove that 0'9' = 8. Let X E T,(L(M)) be an arbitrary 
vector and let s : U + P be a local section of A defined on an open neighbourhood U 
of x = p ( u ) .  We set U = s(x) ,  U = f ( u ) .  A .  As X - ( R ~ ) . f * s ( p , X )  is p-vertical, 
@ ( x )  = @[(Ra).fd*(P*X)1 = (A-' 09)(f,s,(p,X)) = (A-' o9p)(s,@,X)). Moreover, 
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@, [X  - (RA),  f .s . (p .X)]  is p'-vertical. Hence, O'[%(X)I = @'[@*((RA)* f .s*(p.X))]  or, 
in other words, 

('P*B')(X) = e l ' [ ( R ~ ) , : ~ , f , s . ( P * X ) l  = (A-' oOl"&sdp*X)) 

= A-' 0 (f'*O')((p,s*(p*X)) = (A-' oep , ) (p*s* (p*X) )  

= (A-' O ~ * B ~ , ) ( S * ( P . X ) )  = (A-' oep)(s,  ( p . x ) )  = e (x ) .  0 

Let n : P + M be a G-structure. Let us denote by AutP the group of all the 
automorphisms of P, considered as a principal bundle; i.e. the elements of Aut P are the 
equivariant diffeomorphisms p : P --L P. Each p E Aut P transforms fibres onto fibres; 
hence p induces a diffeomorphism p~ of the base manifold M uniquely determined by 
imposing p~ o K = n o p. The map p H CM is a group homomorphism that induces an 
exact sequence 1 + Gau P -+ Aut P --t Diff(A4). Set Aut@ = (p E Aut P; p V p  = O p ] .  
From theorem 2(ii) and proposition Z(iv), it follows that p H p~ establishes an isomorphism 
Aut0p Z Diffp(M), for which the inverse mapping is CY H Z. 

4. Lifts and infinitesimal automorphisms 

Proposition 3 (cf [I31 VI, proposition 2.1 and [ZO] (2.20)). Given a vector field X E X ( M ) ,  
there exists a unique vector field f E T ( L ( M ) )  such that 

(1) 2 is p-projectable and its projection is X :  and 

Furthermore, the following properties hold. 
(a) 2 is Gl(m, R)-invariant, i.e. for every A E Gl(m,  a), R A  .f = f .  Hence, for every 

A E gl(m, w), [A*, 81 = 0. 
@) The mapping x H 2 is an R-linear injection. 
(c) [X, Y ]  = [t, PI, 

(2) L2e = 0. 

- 
Proof: Let X = Cy='=, fi(a/axi) be the local expression for X .  The general expression 
for a vector field f on L ( M )  projecting on X is 2 = E:=, h(a/axi) -t Erj=l fij(a/azj). 
We shall prove that the functions f i j  can be uniquely determined using condition (2). The 
local uniqueness of 2 will also show its global existence. We have 

) 
m m 

o = ~ ~ 0 '  = C((frj)dxj + tjdf,) = f t j  + Ctj(af,/ax,) drk. 
j=1 k=I ( j=l 

m .  - .  
Hence, Xt;: = -Ej=]  f;(afi/axk), 1 < k < m or, equivalently, 8zj = fij = 

Let q5t be the local flow of X, and let 6, be the induced flow on L ( M ) .  From the 
definition of &, it follows that p o i  = @top. Hence, the infinitesimal generator Y 
associated with 6, is p-projectable and its projection is X .  Furthermore, from theorem 
Z(i), we have q5T0 = 0 for every t E R. Hence, L y e  = 0. Consequently, Y = f .  
Now, property (a) is immediate. In fact, if z = ( X I ,  ..., X m )  is a frame at a point 
x E M, and A = (aj) E Gl(m,W), for every local diffeomorphism CY : M -+ M, we 
have (CY(Z . A))j = a*(CE, u j X i )  = CE'=, u~or,Xj = (&(z) A)). Taking into account that 
for every I ,  f i  E R, X ,  Y E T ( M ) ,  we have L,t irp = I L g  + fiLp, Lcg,pl = [ L g ,  L i ] ,  
properties (b) and (c) follow. 

ZEl (afi/axk)z;. 
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Definition. A vector field X E X(M) is said to he an infinitesimal automorphism of a 
G-StruCtUre f : P + L ( M )  if each automorphism of its local flow bt is an automorphism 
of P. 

CuroNary. A vector field X E X(M) is an infinitesimal automorphism of a G-structure 
f : P --f L ( M )  if, and only if, X is tangent to f(P) at each point of P. 

Notation. We denote by Xp(M) the set of infinitesimal automorphisms of P. Hence, 
X E X p ( M )  if, and only if, for every t E W, 4, E Diffp(M). If X is tangent to f(P), 
there exists a unique vector field X E X(P) such that for every LL E P, fe(Fu) = 
From proposition 3, it follows that Xp(M) is a Lie suhalgebra of T(M) and we have a map 
Xp(M) + E(P), X H I?, which satisfies properties similar to those of X H f ;  more 
exactly: 

( Ip)  2 is rr-projectahle onto X, for every X E Xp(M). 

(ap) X is G-invariant. 
(2P) $e. = 0. 

(bp) The map X H is an I-linear injection. - -- 
(cP) rx. YI = rx. YI. , . , ~ .  ~ . 

We shall also denote ?by 1 p  when we need to specify the G-structure we are considering. 
The infinitesimal version of theorem 2 is a? follows. 

Proposition 4 .  Let i~ : P + M be a G-structure. A vector field Y E X ( P )  satisfies 
LrOp = 0 if, and only if, there exists an infinitesimal automorphism X E Xp(M) such that 
Y =1. 

Proof. According to (Zp). we only need to prove that the condition L y O p  = 0 implies 
Y = for some X E Xp(M). Let $, be the local flow of Y .  The condition LyOp = 0 means 
+;ep = Bp and from theorem 2(ii) we deduce the existence of a local flow bZ : M + M 
such that (i) each 4z E Diffp(M); and (ii) for every t E I ,  qC = z. If we denote by X the 

0 infinitesimal generator o f  br, (i) and (ii) prove that Y = 1. 

5. Invariant Lagrangians P ( p )  

Given a fihred manifold p : N + M, let us denote by p1 : J ' ( N )  -+ A4 the I-jet bundle of 
local sections of p .  If i~ : P i Y is a G-structure, then each automorphism (0 : P --f P 
induces an automorphism p(') : J'(P) + J ' ( P )  by setting (o")(j;s) = jiM(posopn;'), 
where c p , ~  : M -+ M is the induced map on the base manifold. 

Dejkition. A Lagrangian L : J'(P) + R is said to be invariant under a subgroup 
r c Aut P (or simply, r-invariant) if, for every 9 E r, f o 90) = f. 

In field theory, however, the action is defined by means of a Lagrangian density, nut hy a 
Lagrangian function. It is  thus natural to extend the notion of invariance to these differential 
forms. Nevertheless, we shall see below that invariance for Lagrangian densities can be 
reduced to invariance for scalar Lagrangians on a G-structure. 
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Definition. A Lagrangian density is a horizontal m-form Q, on J ' ( P ) ,  where m = dim M. 
A Lagrangian density is said to be invariant under a subgroup r c Aut P if for every rp E r, 

Here 'horizontal' means that for every nl-vertical vector field X E X ( J ' ( P ) ) ,  we 
have ixQ,  = 0. Hence, locally we have a, = Ldxl A . . . A dr,, for some function 

(rp(l')*am =a,. 

L E C y P ( P ) ) .  

Proposition 5. Let U, be the horizontal m-form on P given by U, = 8; A , ,  , AO;, where 
8; are the components of the canonical form on P .  Then the following hold: 

(i) U, is Diffp M-invariant. 
(ii) For every p E Gau P, there exists a unique invertible function x(p) E Cm(M) 

such that p*o, = x(rp)o,. Furthermore, x is a group homomorphism from Gau P into the 
multiplicative group of invertible functions of the base manifold. 

(iii) the m-form U, is Gau P-invariant if, and only if, G c Sl(m.  W). 
(iv) Any Lagrangian density can be uniquely written as a, = Fw,. F E C m ( J ' ( P ) )  

and a, is Diffp M-invariant if, and only if, F is Diff, M-invariant. The same holds for 
Gau P-invariance if G is unimodular. 

Proof. In order to prove (ii). let us consider a 
coordinate domain ( U ;  XI, . . . , xm) on M, and let (z j )  be the coordinates induced on 
p- ' (U )  in the bundle of linear frames. A gauge transformation is locally given by 
p*(z;) = rpizj. p; E C"(U), where for every x E U ,  the matrix (rpi(x)) belongs to 

(det(p;))-'m,, thus proving the local existence of ~( rp) .  Since its uniqueness is obvious, 
the global existence of x(p) also follows. If 9 is another gauge transformation, we have 
(rpo+Ym, = x(po @)mm = Jr'(p*o,) = V(X(V)U,) = x(rp)(@*u,) (since @ induces 
the identity on M) = x(p)x(@)o,. 

Moreover, part (iii) is a consequence of the proof of (ii), and (iv) follows directly from 

Part (i) follows from theorem 2(ii). 

G. Thus, p*(O;A,..A8;) = (p*@;)A ... A(p'8F) = (det(rp~))-'(det(tj))drl~ ... Adx, = 

(i) and (iii). 0 

Once invariance has been reduced to scalar Lagrangians, our purpose is to analyse the 
Gau P and Diffp M-invariance. 

Theorem 3. 
J ' ( P )  there are no Gaup-invariant Lagrangians except the functions on M. 

Proof. If a Lagrangian L is Gau P-invariant, it is also invariant under the gauge algebra 
of P (which will be denoted by gau P ) ,  i.e. for every n-vertical G-invariant vector field X 
on P, X ( j $  = 0, where X(ll is the infinitesimal generator of @:'I, and Ot is the local flow 
of X, since each E Gau P. Let (U; XI, . . . . x,) be an open coordinate domain on M 
such that d ( U )  E U x G. Let (y1, . . . , y.) be the canonical coordinates associated with 
a basis (A,, . , , , A,) of the Lie algebra g of G, i.e. yi(exp(A;A,)) = Ai, 1 < i < n =dimG. 
For U ,  t close enough to the identity we have 

Let a : P -+ M be a G-structure. Assume M and G are both connected. On 

where y(u) = yl(u)R' ... YAUP,  (Y = (011,. . . , (Y") E Nn and C& are the constants in the 
Baker-Campbell-Hausdorff formula (cf [21] section 2.15). 
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On a-l(U), we can define the flows O;, 1 < i < T ,  by setting O;(x,u)  = 
( x ,  exp(rAi)u). Let V i  be the infinitesimal generator of @;. As Q: E Gau P, V i  E 
gau P and, consequently, for every system of functions E Cm(U), we have 

( f iV')( l ) (r . )  = 0. (5.2) 

It follows from (5.1) that vi = fhi(a/ayh), where fhi = CBEs ~ i ) ~ y f l ,  and (i) 
(2) 

stands for the multi-index (i) = (0,. . . 1,. . . ,O). Hence, fhi(0) = 8hi and, consequently, 
the matrix (fhi) is invertible on a neighbourhood of the origin. 

Moreover, from the general formulae for jet prolongation of vector fields (for example, 
see [23]) we obtain 

where y," are the coordinate functions induced on J ' ( n - ' U ) ,  i.e. y, B ( J ~ s )  = 
(a(rfl 0 s)/aq)(x). 

As the functions fi are arbitrary, equation (5.2) yields 

ar. 
=O. (5.4) 

As (fhi) is locally invertible, from (5.4) we obtain aL/ayT = 0 and, from (5.3), aC/ayn = 0. 
Hence, C. is locally a function on M .  Since the fibres of J ' (P)  + M are connected by 

0 

Notations. Let G'(M),  be the Lie group of r-jets at x of local diffeomorphisms ct : 
( M , x )  -+ ( M , x ) .  We denote by G2*'(M), the kernel of the projection G2(M)1 -+ 
G'(M), .  Let a : P + M be a G-structure and let (DiffpM), be the subgroup of the 
automorphisms 01 E Diffp M such that ??(U) = U. We set 

virtue of the hypothesis, we can conclude the proof. 

G:'(M), = (jzctx;ct E (DiffpM),,} x = ~ ( u ) .  

Proposition 6. If g is of finite type (i.e. for some k EN, the kth prolongation of g vanishes), 
G$I(M), is a Lie subgroup of GZ.l(M),. 

Proof. If g is of finite type, Diffp M is known to be a Lie transformation group. As 
(Diffp M ) ,  is closed in Diffp M ,  and G2,'(M), is the image of the homomorphism of Lie 

a 
We recall that the canonical projection J ' f P )  --f P, j i s  H s(x).  is an affine bundle 

modelled over the vector bundle T ' ( M )  @,I(,) V(P), i.e. for every U E P, x = n(u), the 
vector space T:(M)@V,(P) acts by translations on the fibre J'(P),. We denote this action 
by (q, j j s )  H q + j i s ,  q E T:(M) 0 V, (P) ,  j i s  E J'(P),, U = s ( x ) .  Moreover, we have 
a natural identification g; V, (P) ,  given by A H A t .  Hence, we can think of the elements 
in T;(M) 0 V,(P) E T:(M) 0 g as being g-valued covectors at x E M .  

groups (Diffp M)u -+ G2,'(M),,  OL I+ jjct, the result follows. 
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Lemma 2. Let z : P --f M be a G-structure. 
(i) The action of (Diffp M), on J ' ( P ) ,  factors through G$'(M)&. 
(ii) Once an element j i s  E J1(P),, U = s ( x ) ,  has been fixed, an action of G $ ' ( M ) ,  

(5.5) 

on T:(M) €3 g can be defined by setting for every 01 E (Diffp M),,, q E T;(M) @ g, 

(j:a). q + j i s  = &')(q + j :s) .  

Then, G$' (M) ,  acts by translations, 

Proof. 

depends on j$, it is clear that 01 j :s only depends on I;'.. 

J 1 ( L M ) , .  We set sj = zj os .  Hence, 

(i) (Diffp M), acts on J ' ( P ) ,  by 01' jis = E( ' ) ( j i s )  = j i (Zosocy - ' ) .  As E at U only 

(ii) First of all, let us calculate the local expression of the action of (DiffLM M).  on 

m 
~ ( & o s o f f - ' ) = ~  (2 -s; ') oa-l 

i = l  

and, consequently, for every 01 E (DiffLM M ) " ,  

(5.7) 

where z y  are the coordinate functions induced on Jl(p-IU).  It follows from (5.6) that 
01 E Diffp M if, and only if, for every x' E U ,  

thus proving that G$'(M)u acts by translations on T;(M) €3 g. U 

We recall that a G-structure P is said to be transitive if for every couple of points 
U ,  U' E P there exists an automorphism 01 E Diffp M such that E(u) = U'. 

Theorem4 

and functions on J ' ( P ) ,  invariant under the action of G$'(M), .  

N = (dimM)(dimG) -dimG$l(M)u. 

Let r : P + M be a transitive G-structure such that G$'(M,) is a Lie group. 
(i) The map L H LIJ~(p)v establishes a bijection between Diffp M-invariant Lagrangians 

(ii) The number of functionally independent Diffp M-invariant Lagrangians is equal to 
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Remark. As P is transitive, if G$'(M),  is a Lie group the same holds for any other 
G$l(M)u,, and all these groups are isomorphic. Hence, N does not depend on U. 

Proof of theorem 4. 
(i) If L is Diffp M-invariant its restriction to J ' ( P )  is also invariant under (Diffp M), 

and, consequently, G$'(M).-invariant as well. Conversely, assume p E C " ( J ' ( P ) )  is 
G$'(M).-invariant. This means that for every u E (Diffp I V ) ~ ,  jds  E J 1 ( P ) , ,  s ( x )  = U, 
we have p @ ' ) ( j j s ) )  = p ( j i s ) .  Let j i s '  E J 1 ( P )  be an arbitrary point. By virtue of 
the hypothesis there exists an automorphism $ E Diffp M, such that ?(U) = s ' (x ) ,  and 

accordingly q ( x )  = x'. We can define a Lagrangian C by setting L(j$s') = p($-  O,a )) 
and the definition makes sense because it does not depend on the automorphism chosen. 
In fact, if $' E D E p M  is another automorphism such that v(u) = s'(x),  then 
@ - I  o $' E ( D i p  M ) ,  and hence 

F Ethyo Gordejuela and J Murioz MoSquC 

1 \ 1 1  , I  I 

(ii) Once the point j j s  has been fixed we can choose the coordinates so that s i j ( x )  = & I ,  
and formula (5.9) reads as z y ( ( j : u )  . q )  = (a*orh/axkaxj)(x) + 0:. By virtue of our 
hypothesis, it is now clear that G$'(M),  acts on T:(M) Q1 g as a vector subspace W' 
of a finite-dimensional real vector space W acts by translations on W (lemma Z(ii)), and 
the number of W'-invm'ant independent functions on W is equal to dim W - dim W', thus 

0 concluding the proof of the theorem. 

Example. 
(i) G = Gl(m,R). Hence P = L ( M )  and the G-structure is transitive. We have 

DiffpM = DiffM and (DiffM), = (a E DiffM;u(x) = xu,,, = i d ) .  Therefore 
dimG$'(M). = m(m:'). Hence N = m . m2 - c) = mc). In fact, it is not difficult 
to construct a basis of DiffM-invariant Lagrangians with geometrical meaning. We define 
functions L$ : J 1 ( L M )  +R, 1 < j c k < m, 1 < i < m, as follows. If locally 
s = ( X I , .  . . , Xm), we set: [ X j ,  X,] = Cy='=, Ljk(jjs)(Xi). It is not difficult to prove 
that Lj.k are really invariant and functionally independent at each point of J ' ( L M ) .  As 
the number of Cik functions is N ,  we can conclude that they are a local basis for Diff M- 
invariant Lagrangians. 

(ii) G = O ( m ) .  Let IT : P + M be a transitive G-structure. Hence, P is the bundle of 
orthonormal frames of a metric g on M of constant curvature (reference [23] 4.3). As the 
relations u ( x )  = x ,  a.;* = i d ,  for an isomehy 01 imply u = i d ,  we have G $ ' ( M ) ,  = ( i d )  
and N = m(:). 

(iii) Let (M ' ,  g'), (MI', g"), m' = dim M'. m" = dim M", be two Riemannian manifolds 
of constant curvature and let M = M' x M", g = (g', 8"). Note that generally (M, g) 
will not be a space of constant curvature. Let s : P -+ M be the bundle with the points 
(Xi? . , . , X k , ;  X ; ,  . , . , XL.), where ( X i . .  . . , X;,) (resp. (XT, . . . , X$)) is an orthonormal 
basis for (M', g') (resp. for (M", g")). Then P is a transitive O(m') x O(m")-structure and 
we have N = (m'+m'')($)(:"). 

6. Conclusions 

We have seen that the gauge group of the bundle of linear frames is an important object in 
dealing with the differential geometry of any G-structure. In fact, we have shown by means 
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of examples that the set of homotopy classes of G-structures can be explicitly calculated 
following our results. Since we have stmctured the set of C-structures on P as the sections 
of a fibre bundle over M (precisely, the adjoint bundle of L ( M ) )  in the general case, it 
seems to be possible to obtain additional information by using more sophisticated tools 
in algebraic topology, although we have not proceeded further at this point. Moreover, 
in the second part of the article, we have analysed the invariance under the natural groups 
associated with a G-structure. We have proved that the unique Gau P-invariant Lagrangians 
on J ' ( P )  are the functions on the ground manifold, P being an arbitrary G-structure. This 
is a negative general result closely related to Utiyama's $heorem. In fact, as we stated 
in the introduction, the bundle of connections K of P can be canonically identified with 
the quotient bundle J 1 ( P ) / G  and, in particular, the above result implies that the unique 
Gau P-invariant Lagrangians on J o ( K )  = K are the functions on M ,  i.e. the unique zero- 
order gauge-invariant Lagrangians on the bundle of connections of P are the functions 
on the ground manifold. This is obtained by simply pulling I: : K + 1 back via the 
natural projection J ' ( P )  + K and applying theorem 3. Furthermore, it should also be 
noted that there is no evidence that our negative result could be extended to higher-order 
Lagrangians on J ' (P) ,  r > 1 and, in fact, some explicit calculations lead us to admit that 
these Lagragians exist, at least in particular cases. This may be an interesting geometric 
result, although higher-order Lagrangians do not usually appear in classical gauge theories. 

On the other hand, the situation is completely different for the other attached subgroup 
DiffM. For that subgroup, in the case of a transitive structure satisfying some weak 
finiteness conditions, we have been able to calculate the number of functionally independent 
Lagrangians, which in each particular case solves the problem of finding the structure of the 
ring of invariant Lagrangians. The Euler-Lagrange equations of such invariant Lagrangians 
will be invariant under the group DiffM, thus providing very simple examples in the field 
theory of natural variational problems, i.e. variational problems admitting the full group 
of symmetries of the underlying geometric fibre bundle on which the variational problem 
is defined as a group of external symmetries. The variational problems defined by the 
Lagrangians studied here are too simple in order to be considered as direct models for 
general relativity or for other problems in G-structures, since the fields involved are linear 
frames purely. This corresponds to the first part in Kibble's approach. These Lagrangians, 
however, may be useful in determining invariant Lagrangians defined on the bundle of G- 
structures for any closed subgroup G c Gl(m. 1). Let us explain in detail how the ring of 
Diff M-invariant Lagrangians on L ( M )  can be considered as the first reduction in order to 
obtain Diff M-invariant Lagrangians for the metric theory, which corresponds to the second 
step of Kibble's program in dealing with general relativity as a gauge theory. Let M + M 
be the bundle of metrics on M of a prescribed signature (m+, m-), mt + m- = m, and 
let G = SO(m+. m-) be the identity component of the corresponding orthogonal group. 
Furthermore, assume that M is oriented and let p : L+(M)  -+ M be the bundle of all 
positively oriented linear frames. We have a canonical projection of fibred manifolds over 
M, q : L+(M) -+ M ,  sending the frame U = (Xl,. . . ,X,), Xi E T,(M), onto the 
metric q(u) = my + . . . +U:+ - mi++' - . . . -mi++,,.. where ( U ] , .  . . , om) is the dual 
coframe of (XI,. . . X,,,). By means of q, we can identify M with the quotient bundle 
L+(M)/G -+ M ,  the group G acting on the linear frames by simply restricting the action 
of the identity component of the full linear group. Taking jet prolongations, we have a 
submersion J ' ( q )  : J ' ( L t ( M ) )  + J ' ( A 4 ) .  of fibred manifolds over M, and it is not 
difficult to see that a Lagrangian L : J ' ( M )  + R, defined on the first jet prolongation of 
the bundle of metrics is Diff M-invariant if, and only if, the pullback C O  J ' ( q )  is Diff M -  
invariant and it is killed by every J'(q)-vertical tangent vector. Hence, once the ring of 
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Diff M-invariant Lagrangians on J ' ( L + ( M ) )  has been determined (theorem 4) the problem 
of determining Diff M-invariant Lagrangians on J ' ( M )  is reduced to that of determining 
Diff M-invariant Lagrangians on J ' ( L + ( M ) )  which are killed by the vertical distribution 
of the canonical projection, V = Ker J ' ( q ) , .  Moreover, the fibre Vi;, of that distribution 
over j i s  E J'(L+(m)) can be canonically identified with J : ( M ,  g) = J i ( M ,  R) 0 g. thus 
providing for the I-jet prolongation the same meaning as the usual one in gauging the 
orthogonal group. 
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